

Heterocyclic Letters Vol. 9| No.3|327-332|May-July|2019 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

ONE POT SYNTHESIS AND BIOLOGICAL EVALUATION OF NOVEL FUSED THIADIAZOLO-PYRIMIDINE DERIVATIVES

VIJAY V. DABHOLKAR* and DINESH UDAWANT[#], RAHUL JAISWAR

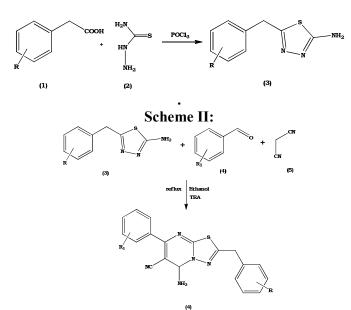
Organic Research Laboratory, Department of Chemistry, *K.C. College, Churchgate, Mumbai-400 020, [#]Guru Nanak College, G.T.B Nagar, Mumbai - 400037, INDIA. E-mail: vijaydabholkar@gmail.com dins1323@gmail.com

Abstract:

One pot synthesis of 5-amino-7-(substituted-phenyl)-2-(substituted-bezyl)-5-H-[1,3,4]thiadiazolo [3,2-a]pyrimidine-6-carbonitrile (6) was achieved by the reaction of 2-amino-5-(substituted)-benzyl-1,3,4-thiadiazole (3), aromatic aldehyde (4) and malononitrile (5). The contents were refluxed in presence of triethylamine as a catalyst and ethanol as a solvent. The structures of the compounds have been confirmed by IR and NMR. Representative compounds were screened for their anti-microbial activity against gram-negative bacteria, E*coli* and *P.aeruginosa* gram-positive bacteria, *S aureus*, and *C diphtheriae* using disc diffusion method. Some of these compounds have been found to exhibit excellent antibacterial activity.

Keywords : 1,3,4-Thiadiazole, Pyrimidine, Malononitrile.

Introduction:


Recently, the chemistry of 1,3,4-thiadiazole derivatives is highlighted due to their wide spectrum of biological activities including antimicrobial¹⁻³, anti-inflammatory^{4,5}, antioxidant^{6,7}, anti-tumour⁸, anti-cancer⁹ and have other pharmacological activities ^{10,11}. Moreover, this ring system is valuable building block for the synthesis of other fused heterocyclic systems. One such system is thiadiazolo [3,2-a]pyrimidine derivatives resulting from the annulations of a pyrimidine ring on thiadiazole as potential bioactive molecules. These fused heterocyclic derivatives have generated great interest in recent years due to their wide range of biological and pharmacological activities including antibacterial¹², antitumor ^{13,14}, fungicidal¹⁵, neuraminidase inhibitors¹⁶ etc.

In view of the versatile biological activities and the benefits of thiadiazolo [3,2-a]pyrimidine derivatives and as a continuation of the efforts to synthesis isolated and fused heterocyclic compounds, herein is reported a facile and convenient route of synthesis of 5-amino-7-(substituted-phenyl)-2-(substituted-bezyl)-5-H-[1,3,4]-thiadiazolo [3,2-a]pyrimidine-6-carbonitrile (6).

Results and discussion

5-amino-7-(substituted-phenyl)-2-(substituted-bezyl)-5-H-[1,3,4]-thiadiazolo [3,2a]pyrimidine-6-carbonitrile (6) was achieved by the reaction of 2-amino-5-(substituted)benzyl-1,3,4-thiadiazole (3), aromatic aldehyde (4) and malononitrile (5). The content was refluxed in presence of triethylamine as a catalyst and ethanol as a solvent(Scheme II). The structures of the compounds have been confirmed by IR and NMR. Representative compounds were screened for their anti-microbial activity against gram-negative bacteria, E*coli* and *P.aeruginosa* gram-positive bacteria, *S aureus*, and *C diphtheriae*using disc diffusion method. Some of these compounds have been found to exhibit excellent antibacterial activity.

Scheme I:

The spectral analysis of representative compounds will be as follows:

2-amino-5-(methoxy)-benzyl-1,3,4-thiadiazole (3a)

Yield: 78%; m.p.=191-195°C;

Anal.Calcd for $C_{10}H_{11}N_3OS$: C, 54.28; H, 5.01; N, 18.99%.Found: C,54.17; H,4.97,N,18.76%.

IR (cm⁻¹):3205(NH₂), 1496 (C=N)

¹**H NMR (DMSO-d₆, δ /ppm):**3.48(s, 2H, CH₂), 3.86(s, 3H, OCH₃), 6.65 – 6.80 (m, 4H, ArH), 8.4(s, 2H, NH₂).

¹³C NMR (DMSO-d₆,δ /ppm):41.5 (CH₂), 60.35 (OCH₃), 118.96- 137.89 (C=C &Ar C), 153.43 (C-OCH₃), 172.1 & 173.2 (2 x S-C=N).

2-amino-5-(2-methyl)-benzyl-1,3,4-thiadiazole (3b)

Yield: 71%; m.p.=210-213°C; Anal.Calcd for C₁₀H₁₁N₃S: C,58.51;H,5.40; N,20.47%. Found: C,58.42; H,5.36,N,20.38%. **IR (cm⁻¹):**3316(NH₂), 1598 & 1522 (C=N). ¹**H NMR (DMSO-d₆, δ /ppm):**2.65 (s, 3H, CH₃), 3.51(s, 2H, CH₂), 6.69 – 6.96(m, 4H, ArH), 8.32(s, 2H, NH₂). ¹³**C NMR (DMSO-d₆,δ /ppm):**23.2 (CH₃), 39.6(CH₂), 124.9- 141.65 (C=C &Ar-C), 169.1 & 170.2 (2 x S-C=N).

5-amino-7-(4-methoxy-phenyl)-2-(4-methoxy-bezyl)-5-H-[1,3,4]-thiadiazolo a]pyrimidine-6-carbonitrile (6a)

[3,2-

Yield: 69%; m.p.=185-189°C;

Anal.Calcd for C₂₁H₁₉N₅O₂S: C,62.21; H,4.72; N,17.27%.Found: C,62.12; H,4.56,N,17.13%. **IR (cm⁻¹):** 3374(NH₂), 2189 (CN), 1594 (C=N).

¹**H NMR(DMSO-d₆, δ /ppm):** 3.31(s,2H,CH₂), 3.82 (s,3H,OCH₃), 3.91(s, 3H,OCH₃), 4.54 (s, 1H, CH), 5.21 (s, 2H,NH₂), 6.87-7.62 (m,8H,Ar- H)

¹³C NMR (DMSO-d₆,δ /ppm): 39.15 (CH₂), 59.13(OCH₃), 57.17(OCH₃), 69.5(C-NH₂), 97.5(C-CN),115.3(CN), 121.26-138.89 (C=C &Ar C),146.3(S-C=N),158.3 (C=N), 162.21 (N=C-S).

5-amino-7-(4-methoxyphenyl)-2-(2-methylbenzyl)-5H-[1,3,4]thiadiazolo [3,2-a]pyrimidine-6-carbonitrile (6b)

Yield: 71%; m.p.=201-205°C;

Anal.Calcd for C₂₁H₁₉N₅OS: C,64.76; H,4.92; N,17.98%. Found: C,64.17; H,4.81,N,17.76%. **IR (cm⁻¹):** 3289(NH₂), 2145 (CN), 1491 (C=N).

¹**H NMR (DMSO-d₆, δ /ppm):** 2.39 (s, 3H, CH₃), 3.29 (s, 2H, CH₂), 3.89 (s, 3H, OCH₃), 4.51 (s, 1H, CH), 5.25 (s, 2H, NH₂), 6.94 – 7.40 (m, 8H, ArH),

¹³C NMR (DMSO-d₆,δ /ppm): 19.9(CH₃),38.2 (CH₃),59.3(OCH₃),70.3(C-NH₂),98.2(C-N),115.3(CN) 124.5- 137.89 (C=C &Ar C), 149.2(S-C=N),157.3 (C=N), 161.3 (N=C-S).

5-amino-7-(4-chlorophenyl)-2-(2-methylbenzyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carbonitrile (6g)

Yield: 61%; m.p.=203-208°C;

Anal.Calcd for C₂₀H₁₆N₅SCl, C,60.98; H,4.09; N,17.78%. Found: C,60.91; H,4.01,N,17.66%. **IR (cm⁻¹):** 3463(NH₂), 2193 (CN), 1576 (C=N).

¹**H NMR (DMSO-d₆, δ /ppm):** 2.25 (s, 3H, CH₃), 3.21 (s, 2H, CH₂), 4.59 (s, 1H, CH), 5.31 (s, 2H, NH₂), 6.91 – 8.14 (m, 8H, ArH).

¹³C NMR (DMSO-d₆,δ /ppm): 20.35 (CH₃), 40.93 (CH₂), 70.9 (C-NH₂), 98.14 (C-CN), 117.2 (CN), 126.73-139.89 (C=C &Ar C), 147.33 (S-C=N), 157.23 (CN), 162.3 (N=C-S).

5-amino-2-(4-chlorobenzyl)-7-(4-chlorophenyl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carbonitrile(6h)

Yield: 74%; m.p.=215-219°C;

Anal.Calcd for $C_{19}H_{13}N_5SCl_2$: C,55.08; H,3.16; N,16.90%. Found: C,54.87; H,3.08, N,16.76%.

IR (cm⁻¹): 3363(NH₂), 2145 (CN), 1568 (C=N).

¹**H NMR (DMSO-d₆, δ /ppm):** 3.25 (s, 2H, CH₂), 4.61 (s, 1H, CH), 5.29 (s, 2H, NH₂), 7.12 – 7.65 (m, 8H, ArH).

¹³C NMR (DMSO-d₆,δ /ppm): 39.51 (CH₂), 69.58 (C-NH₂), 98.72 (C-CN), 116.23 (CN), 126.72-141.23 (C=C &Ar C), 149.23 (S-CN),158.32 (C=N), 163.23 (N=C-S).

5-amino-2-(4-methoxybenzyl)-7-phenyl-5H-[1,3,4] thiadiazolo [3,2-a]pyrimidine-6-carbonitrile(6k)

Yield: 66%; m.p.=210-215°C; Anal.Calcd for $C_{20}H_{17}N_5OS$: C,63.98; H,4.56; N,18.65%. Found: C,63.87; H,4.42,N,18.58%. **IR (cm⁻¹):** 3253(NH₂), 2386 (CN), 1597 (C=N). ¹**H NMR (DMSO-d₆, δ /ppm):** 3.19 (s, 2H, CH₂), 3.91 (s, 3H, OCH₃), 4.55 (s, 1H, CH), 5.19 (s, 2H, NH₂), 6.87 – 7.62 (m, 9H, ArH).

¹³C NMR (DMSO-d₆,δ /ppm): 40.21 (CH₂), 60.12 (OCH₃), 70.28 (C-NH₂), 99.25 (C-CN), 116.1 (CN), 119.21-138.39 (C=C &Ar C), 148.2 (S-CN),159.32 (C=N), 162.47 (N=C=S).

5-amino-2-(4-chlorobenzyl)-7-phenyl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carbonitrile(6m)

Yield: 68%; m.p.=193-198°C;

Anal.Calcd for C₁₉H₁₄N₅SCl: C,60.07; H,3.71; N,18.44%. Found: C,59.89; H,3.59,N,18.31%. **IR (cm⁻¹):** 3336(NH₂), 2200 (CN), 1601 (C=N).

¹**H NMR (DMSO-d₆, δ /ppm):** 3.19 (s, 2H, CH₂), 4.53 (s, 1H, CH), 5.21 (s, 2H, NH₂), 7.03–7.82 (m, 9H, ArH).

¹³C NMR (DMSO-d₆,δ /ppm): 39.21 (CH₂), 69.28 (C-NH₂), 97.23 (C-CN), 114.53 (CN), 126.52-138.32 (C=C &Ar C), 148.21 (S-C=N), 160.23 (C-C=N), 161.24 (N=C-S)

Experimental

Melting points of all synthesized compounds were determined in open capillary tubes on an electro thermalapparatus and are uncorrected. The progress of reaction was monitored by thin layer chromatographyon silica gel coated aluminum plates (Merck) as adsorbent and UV light as visualizing agent. ¹H NMR and ¹³C NMRspectra were recorded on Varian 500 MHz NMR spectrophotometer using CDCl3/DMSO-d6 as solvent and TMS as an internal standard (chemical shifts in δ ppm). C, H, N estimation was recorded on Carlo Erba1108 (CHN) Elemental Analyzer.

Synthesis of 2-amino-5-(substituted)-benzyl-1,3,4-thiadiazole (3): General Procedure.

An equimolar mixture of phenyl acetic acid (1) (0.01 mol) and Thiosemicarbazide (2) (0.01 mol)) in phosphorous oxychloride (10 ml) was refluxed for about 1 hr. The progress of reaction was monitored on TLC. Upon completion, the reaction mixture was quenched onto crushed ice. The resultant solution was further refluxed for 4hrs and filtered. The filtrate was neutralized with dilute KOH solution, to maintained pH 8-10, thus the product was precipitated out, was filtered, washed with water and purified by recrystallization from ethanolic water to yield (3).

The physical characterization of synthesized compounds (3a-e) was given in Table I. Table-I

Compounds					
Compounds	R	m.p. (°C)	Yield (%)		
3a	4-OCH ₃	191-95	78		
3b	2-CH ₃	210-13	71		
3c	4-C1	220-23	85		
3d	2,4-dichloro	245-47	72		
3e	Н	214-17	69		

Physical data of 2-amino-5-(substituted	1) henzyl 1 3 / thisdiszole (3)
T hysical data of 2-annu-5-(substituted	1)-Delizy1-1,5,4-tillaulazole (5)

Synthesis of 5-amino-7-(substituted-phenyl)-2-(substituted-bezyl)-5-H-[1,3,4]thiadiazolo [3,2-a]pyrimidine-6-carbonitrile (6): General Procedure.

An equimolar mixture of 2-amino-5-(substituted)-benzyl-1,3,4-thiadiazole (3) (0.01 mol, 1.66 gms), aromatic aldehyde (4) (0.01 mol, 1.36 gms) and malononitrile (5) (0.01 mol, 0.91 gms)

D. Udawant et al. / Heterocyclic Letters Vol. 9| No.3|327-332|May-July| 2019

in ethanol (10 ml) as a solvent and triethylamine as a catalyst, was refluxed for about 10-12 hrs. The progress of reaction was monitored on TLC. Upon completion, the reaction mixture was cooled to room temperature. The product was precipitated out was filtered, washed with water and purified by recrystallization from ethanolic water to yield (6).

The physical characterization of synthesized compound(**6a-o**) was given in **Table II**. **Table-II**

Physical	data	of	5-amino-7-(substituted-phenyl)-2-(substituted-bezyl)-5-H-[1,3,4]-
thiadiazol	o [3,2-a]pyri	imidine-6-carbonitrile (6)

Compounds	R	R1	m.p.	Yield
			(°Ĉ)	(%)
6a	4-OCH ₃	4-OCH ₃	185-189	69
6b	2-CH ₃	4-OCH ₃	201-205	71
6c	4-C1	4-OCH ₃	218-223	68
6d	2,4-dichloro	4-OCH ₃	220-225	63
<u>6e</u>	Н	4-OCH ₃	211-217	72
6f	4-OCH ₃	4-C1	190-195	64
6g	6g 2-CH ₃		203-208	61
6h	4-C1	4-Cl	215-219	74
6i	6i 2,4-dichloro		191-197	65
6ј	Н	4-C1	204-209	59
6k	6k 4-OCH ₃		210-215	66
61	2-CH ₃	Н	202-208	73
6m	6m 4-Cl		193-298	68
6n	2,4-dichloro	Н	189-294	62
60	Н	Н	221-227	70

Antimicrobial and antifungal activities

All the newly synthesized compounds were evaluated for their antibacterial activity against gram-negativebacteria, E coli and P aeruginosa and gram-positive bacteria, S aureus, and C diphtheriae using discdiffusion method^{17, 18}. The zone of inhibition was measured in mm and the activity was compared withstandard drug. The antimicrobial data was given in **Table II**.

Antibacterial Activity of compound 6						
	Zone of inh	Zone of inhibition (in mm)				
Comp.	Gram Posit	Gram Positive		Gram negative		
	S.aureus	C.diphtheria	P.aeruginosa	E.coli		
6a	21	22	20	23		
6b	23	24	21	26		
6d	18	20	19	20		
6h	22	23	23	19		
6i	20	19	26	21		
6j	14	17	22	17		

 TABLE III:Antibacterial Activity of compound 6

D.	Udawant et al.	/ Heterocyclic	Letters Vol.	No.3 327	-332 May-July 2019

61	12	14	21	24
60	23	24	20	22
Amphicilintrihydrate	26	28	24	21
DMSO	0	0	0	0

* Diameter of the disc was 6mm;

Concentration of the compounds taken was about 100 µg/mL.

Acknowledgements.

The authors are thankful to the Management of K. C. College and Guru Nanak College, Mumbai, India, for the constant encouragement and providing the necessary facilities. The authors are also thankful to The Director, TIFR Mumbai for the spectral data.

References:

- 1. M. Abdul Rahiman, G.H. Suryateja, J. Applicable. Chem, 2015, 4 (5), 1469-1476.
- 2. X. Liu, Y. Shi, Y. Ma, Eur. J. Med. Chem, 2009, 44, 2782-2786.
- 3. Thoraya A. Farghaly, Magda A. Abdallah, *Molecules*, 2012, 17, 14625-14636.
- 4. Sergey V. Ryabukhin, Andrey S. Plaskon, *Tetrahedron letters*, **2010**, 51, 4229-5232.
- 5. Hai-Ming Guo, WU Yan-Yan, *J Org Chem*, **2010**, 75: 3863-3866.
- 6. D. Cressier, C. Prouillac, *Bioorg Med Chem*, 2009, 17, 5275–5284.
- 7. D. Sunil, A.M. Isloor, P. Shetty, *Arabian J. Chem*, **2010**, 3, 211-217.
- 8. D.A. Ibrahim, Eup. J. Med. Chem, 2009, 44, 2776-2781.
- 9. Doaa E. Abdel Rahman, Khaled O. Mohamed, *Der PharmaChemica*, **2014**, 6(1), 323-335.
- 10. V. Mathew, J. Keshavayya, Eur. J. Med. Chem, 2007, 42, 823-840.
- 11. J. Ramprasad, N. Nayak, Eur. J. Med. Chem, 2015, 95, 49-63.
- 12. A.K. Gadad, C.S. Mahajanshetti, Eur. J. Med. Chem, 2000, 35, 853–857.
- 13. N.S. El-Sayed, E.R. El-Bendary, Eur. J. Med. Chem, 2011, 46, 3714–3720.
- 14. R. Lin, S.G. Johnson, P.J. Connolly, Bioorg. Med. Chem. Lett, 2009, 19, 2333–2337.
- 15. S.S. Shukurov, M.A. Kukaniev, Russ. Chem. Bull, 1993, 11, 1871–1874.
- 16. C.W. Sun, X.D. Zhang, H. Huang, P. Zhou, *Bioorg. Med. Chem. Lett*, **2006**, 14, 8574–8581.
- 17. Cruickshank R, Duguid J P, Marmion B P, *Medicinal Microbiology*, 12th edn, Vol 11, (1975) (Churchill Livingstone, London).
- 18. Arthington-Skaggs B A, Motley M, Morrison C J, *J Clin Microbiology*, **38**, 2254 (2000).

Received on July 7, 2019.